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A B S T R A C T

Adaptive enrichment designs involve rules for restricting enrollment to a subset of the population during the
course of an ongoing trial. This can be used to target those who benefit from the experimental treatment. Trial
characteristics such as the accrual rate and the prognostic value of baseline variables are typically unknown
when a trial is being planned; these values are typically assumed based on information available before the trial
starts. Because of the added complexity in adaptive enrichment designs compared to standard designs, it may be
of special concern how sensitive the trial performance is to deviations from assumptions. Through simulation
studies, we evaluate the sensitivity of Type I error, power, expected sample size, and trial duration to different
design characteristics. Our simulation distributions mimic features of data from the Alzheimer's Disease
Neuroimaging Initiative cohort study, and involve two subpopulations based on a genetic marker. We investigate
the impact of the following design characteristics: the accrual rate, the time from enrollment to measurement of
a short-term outcome and the primary outcome, and the prognostic value of baseline variables and short-term
outcomes. To leverage prognostic information in baseline variables and short-term outcomes, we use a semi-
parametric, locally efficient estimator, and investigate its strengths and limitations compared to standard esti-
mators. We apply information-based monitoring, and evaluate how accurately information can be estimated in
an ongoing trial.

1. Introduction

Adaptive enrichment designs involve pre-planned rules for re-
stricting enrollment based on accrued data in an ongoing trial [1]. If,
for example, a subpopulation shows evidence of no benefit of treat-
ment, its enrollment could be stopped while the complementary sub-
population continues to be enrolled [2]. give an overview of statistical
methods for adaptive enrichment designs, including the p-value com-
bination approach [3–6]; the conditional error function approach [7];
and approaches using group sequential computations [8,9]. We use an
adaptive enrichment design from the general class of [10]; which is
based on the group sequential computation approach.

We consider trials where the primary outcome is observed a fixed
amount of time after enrollment (called the delay); we refer to such
outcomes as delayed responses. To illustrate, we use data from the
Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort study. We
set the primary outcome to be a measure of change in severity of

dementia symptoms from baseline to 2 year of follow-up described
below; this is similar to the primary outcome in an ongoing, Phase 3
clinical trial of a drug to slow cognitive and functional decline from
early Alzheimer's Disease [11]. Also recorded are baseline variables and
the short-term outcome of change in severity of dementia symptoms
measured at 1 year of follow-up.

To leverage prognostic information in baseline variables and the
short-term outcome, we use a semiparametric, locally efficient esti-
mator (called the adjusted estimator, for conciseness) from Ref. [12].
The adjusted estimator in a randomized trial is consistent under mild
regularity conditions without requiring any parametric model as-
sumptions. It has potential to improve precision, power, expected
sample size, and trial duration when variables are sufficiently prog-
nostic for the outcome. In trials with delayed responses, the adjusted
estimator uses information from pipeline participants, i.e., enrollees
whose primary outcome has not yet been observed.

We evaluate the sensitivity of Type I error, power, expected sample
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size, and trial duration to different design characteristics through si-
mulation studies. Our simulation distributions mimic features of data
from the Alzheimer's Disease Neuroimaging Initiative, and involve two
subpopulations of interest based on a genetic marker. We investigate
the impact of the following design characteristics: the accrual rate, the
delay time of the short-term outcome and the primary outcome, and the
prognostic value of baseline variables and short-term outcomes. The
simulated trials involve multiple stages, and information-based mon-
itoring is used to determine the time of interim analyses.

We focus on adaptive enrichment designs since their added com-
plexity (compared to standard designs) may raise special concern about
how sensitive their performance is to deviations from initial assump-
tions. Since statistics from multiple populations are used in the stopping
rule and multiple testing procedure, changes to assumptions (which
affect the joint distribution of these statistics) could have impacts that
are not easy to predict a priori. This was observed, for example, when
we varied the ratio of information accrual rates in the two subpopula-
tions; in these cases the covariance structure of the test statistics is af-
fected. This sometimes resulted in higher than 80% power for certain
hypothesis tests, despite the fact that we used information-based
monitoring (which in a single population trial design would maintain
constant power at a given alternative). These results are described in
Section 5.

In Section 2 we describe the ADNI study. In Section 3 we present
notation. The simulation setup is given in Section 4. Section 5 presents
simulation results, including the impact of prognostic baseline variables
and a short-term outcome (Section 5.1), the impact of varying delay
time (Section 5.2), and the impact of varying the accrual rates (Section
5.3) on the performance of the adaptive design. In Section 6 we discuss
information accrual rates and how accurately these can be estimated in
an ongoing trial. Section 7 concludes with discussions and future re-
search directions.

2. Data example

Our simulations are based on distributions that mimic features of
the data from the Alzheimer's Disease Neuroimaging Initiative (ADNI),
an observational longitudinal study of cognitive impairment and pro-
gression to Alzheimer's disease. The ADNI was initiated in 2003 as a
public-private partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of the study has been to test whether
serial magnetic resonance imaging, positron emission tomography,
other biological markers, and clinical and neuropsychological assess-
ment can be combined to measure the progression of mild cognitive
impairment and early Alzheimer's disease.2 The Clinical Dementia
Rating (CDR) scale is used to assess the severity of dementia symptoms
and provides both a numeric global score ranging from 0 to 3, and a
sum of boxes (SOB) score ranging from 0 to 18.

Our data come from 286 patients who entered the ADNI study with
mild cognitive impairment (CDR 0.5 with a SOB score 2.5 or less) and
who remained in the study for the full 12 months of follow-up. For
conciseness, we refer to the CDR sum of boxes score as the CDR score.
We define the primary outcome Y as the difference between the CDR
score at baseline and at 2 years. We define the short-term outcome L as
the difference between the CDR score at baseline and at 1 year. Let W
denote the following five prognostic baseline variables: CDR score at
baseline; age; Aβ42 (a type of amyloid plaque involved in Alzheimer's
disease progression); Alzheimer's Disease Association (ADA, 13 items)
scale; and the Mini Mental State Examination (MMSE) score. We con-
sider two distinct subpopulations defined by apolipoprotein E (APOE)
ɛ4 carrier status. Subpopulation 1 consists of those with no ɛ4 alleles,
and subpopulation 2 consists of those with at least one ɛ4 allele. Among
the 286 patients, 47% carry no APOE ɛ4 alleles. We consider a

hypothetical treatment whose goal is to delay the progression of dis-
ease.

3. Notation

When followed up completely, each participant i in the trial has full
data vector = S W A L YD ( , , , , )i i i i i i . We use the vector

= S W A L YD ( , , , , ) when referring to a generic participant. The vari-
able ∈S {1,2}i denotes the subpopulation that participant i belongs to;
Wi denotes a vector of baseline variables; Ai denotes the treatment as-
signment indicator; Li denotes the short-term outcome; and Yi denotes
the primary outcome. We assume that (Si,Wi,Ai) are observed when
participant i is enrolled, and that Li and Yi are observed at time dL and
dY, respectively, from the time of enrollment. Assume ≤d dL Y . Each
vector D is assumed to be an independent, identically distributed draw
from an unknown distribution Q, with the only restriction being that A
is randomized by design with equal probability of being 0 or 1, in-
dependent of S,W. The short-term outcome L can be any predefined
measurement made after randomization. No assumptions on its re-
lationship to Y are needed in order that our estimators (adjusted and
unadjusted) are consistent and asymptotically normal [13].

For a given population, the average treatment effect is defined to be
the difference between the population mean of the primary outcome
under treatment (A = 1) versus under control (A = 0). Denote the
average treatment effect in subpopulation 1, subpopulation 2, and the
combined population by Δ1, Δ2, and Δ0, respectively, where Δ0 = E(Y
|A = 1) − E(Y |A = 0) and for each subpopulation ∈s {1,2}, Δs = E(Y
|A = 1,S = s) − E(Y |A = 0,S = s). Let ps denote the proportion of
subpopulation s in the combined population, and we have Δ0 = p1Δ1 +
p2Δ2. Define the null hypotheses

≤ ≤ ≤H Δ H Δ H Δ: 0; : 0; : 0,01 1 02 2 00 0

which represent no average treatment benefit in subpopulation 1,
subpopulation 2, and the combined population, respectively.

We quantify the prognostic value of W and L for explaining variance
in the primary outcome Y for the combined population. Define the R-
squared of W and R-squared of L as

= =R E Y W
Y

R E Y L
Y

Var{ ( )}
Var( )

, Var{ ( )}
Var( )

.W L
2 2

(1)

RW
2 represents the fraction of variance in Y explained by W. RL

2 re-
presents the fraction of variance in Y explained by L.

Using the ADNI study data, we approximated (1) to roughly de-
termine how much of the variance of the outcome Y is explained by W
or L. The empirical RW

2 is computed as in (1), with E Y W( ) estimated by
a linear model with intercept and main terms W3,W4, and the variances
are estimated by the empirical variance. (We use only W3,W4 in the
working model for constructing the adjusted estimator; see Section 4.2.)
A similar computation was done to obtain the empirical RL

2. The re-
sulting values are 0.20 and 0.48 for RW

2 and RL
2, respectively, for the

combined population.
We also estimated RW

2 and RL
2 within each subpopulation, and found

the prognostic values differ by subpopulation. The corresponding em-
pirical RW

2 is 0.30 for subpopulation 1 and 0.14 for subpopulation 2; the
empirical RL

2 is 0.44 for subpopulation 1 and 0.50 for subpopulation 2.
This differential prognostic value by subpopulation impacts informa-
tion accrual and power for the adjusted estimator as described in
Section 5. In what follows, RW

2 and RL
2 refer to (1) for the combined

population.

4. Simulation setup

4.1. Overview

Our goal is to evaluate the performance of an adaptive enrichment
design with a delayed response when we vary the prognostic values in2 For up-to-date information, see www.adni-info.org.
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baseline variables and short-term outcome, accrual rates, delay time,
and estimator used. The performance is evaluated based on Type I
error, power, expected sample size and average duration of the trial,
and is based on two estimators: the unadjusted estimator (the difference
between the sample means of the primary outcome between the two
study arms), and an adjusted estimator that leverages baseline variables
and the short-term outcome. The latter is a targeted maximum like-
lihood estimator (TMLE) of [12] implemented in the R package ltmle
[14]. Other candidate adjusted estimators include, e.g., those of Refs.
[15,16,13]. Colantuoni and Rosenblum [17] showed that although the
magnitude of precision gains depends on the estimator used, the impact
of adjustment was qualitatively similar across estimators in their si-
mulation studies. We conjecture that the same will hold in our simu-
lation studies, but it is an open problem to determine this. In our si-
mulation studies, both the unadjusted and adjusted estimators are
consistent and asymptotically normal under mild regularity conditions
[12].

We vary the following in our simulation studies: the prognostic
value of baseline variables W and short-term outcome L represented by
the R-squared formulas in (1); the delay time dL of the short-term
outcome; the delay time dY of the final outcome; and the accrual rate.

4.2. Data generating distributions based on ADNI data

Hypothetical trials are populated with participants, each of whose
data vector D is drawn independently from a data generating dis-
tribution Q, which differs by simulation study. We construct each Q to
mimic certain observed relationships between W, L and Y within each
subpopulation ∈s {1,2} in the ADNI study. For simplicity, we center W
within each subpopulation.

There is no treatment in the ADNI study. We draw each participant's
study arm variable A independent of S,W as a Bernoulli random vari-
able with success probability 0.5, and having a relationship with Y as
described next. The minimum, clinically meaningful, average treatment
effect for our hypothetical trials is =Δ 0.42min , which corresponds to a
30% relative improvement in mean CDR score change, i.e., a 30% re-
duction in disease progression. Within each of our five simulation stu-
dies (described below in Table 1), we generate data under four treat-
ment effect settings (abbreviated as “effect setting” hereafter): (a)
treatment benefits neither subpopulation (Δ1 = Δ2 = 0); (b) treatment
benefits subpopulation 1 only ( = =Δ Δ Δ, 01 min 2 ); (c) treatment bene-
fits subpopulation 2 only ( = =Δ Δ Δ0,1 2 min ); and (d) treatment bene-
fits both subpopulations ( = =Δ Δ Δ1 2 min ). Effect settings (b) and (c)
involve treatment effect heterogeneity.

The data generating distribution is denoted by

=Q Q Δ Δ R R d d accrual rate( , , , , , , ),W L L Y1 2
2 2

which is determined by the following: the pair of treatment effects for
each subpopulation (Δ1,Δ2), the prognostic value of the baseline cov-
ariates RW

2 , the prognostic value of the short-term outcome RL
2, the delay

between enrollment and the short-term outcome dL, the delay between
enrollment and the primary outcome dY, and the accrual rate. We set
the enrollment process to be random, where the enrollment time of the

patients follows a homogeneous Poisson process with intensity equal to
the accrual rate. We assume that each subpopulation's accrual rate is
proportional to its prevalence in the combined population. In each si-
mulation study, we vary one or several of the above at a time to assess
the impact on trial performance.

Within each subpopulation S = s, W is randomly sampled from the
observed data, and Y and L are generated from the linear models:

= + + + ∼L α α W α A N σɛ , ɛ (0, ( ) )s
W
s

A
s

L L L
s

0
2 (2)

= + + + + ∼Y β β W β A β L N σɛ , ɛ (0, ( ) )s
W
s

A
s

L
s

Y Y Y
s

0
2 (3)

with ɛY and ɛL independent of (W,A) and of each other. The values of β s
0 ,

βW
s , βL

s, σY
s , α s

0 , αW
s and σL

s are based on the above models fit to the ADNI
study data separately within each stratum S = s and leaving out A. We
set =α Δ0.5A

s
s and = −β Δ α βA

s
s A

s
L
s, where Δs is the desired treatment

effect of the corresponding effect setting. This makes the treatment
effect on the short-term outcome half of that on the final outcome,
which we believe is plausible.

We construct simulation distributions with a range of RW
2 and RL

2

values by varying β′s and σ′s. We do so in such a way that the average
treatment effect within each subpopulation is unchanged, and the
variance of Y within each subpopulation and each treatment arm is
unchanged. This is to ensure that the (asymptotic) performance of the
unadjusted estimator is unchanged, providing a benchmark to compare
against. To obtain different values of RW

2 and RL
2, we multiply the ori-

ginal fits βW
s and βL

s from the ADNI data set by a tuning parameter p, and
change β s

0 , βA
s , σY

s and σL
s accordingly to ensure that the variance of Y

given A,S and the average treatment effect given S are unchanged.
Details are given in the Supplementary Material.

Let the default simulation scenario be the one with design char-
acteristics corresponding to the empirical distribution of the ADNI
study data: =R 0.20W

2 , =R 0.48L
2 , dL = 1 year, dY = 2 years, and the

accrual rate for the combined population 167 patients/year. We con-
duct 5 sets of simulations with various design characteristics that are
summarized in Table 1. Each combination of
R R d d( , , , ,accrual rate)W L L Y

2 2 is referred to as a simulation scenario. For
example, in simulation study 1 (row 1 in Table 1), RW

2 is varied from 0
to 0.6 and all other characteristics are the default value.

In all simulations, we use the full set of baseline covariates
(W1,W2,W3,W4,W5) in the data generating distributions (2) and (3) for L
and Y, but we only include baseline variablesW3,W4 (Aβ42 and ADA) in
the working models used by the adjusted estimator. We intentionally
induced such model misspecification, since in practice the working
models used by the adjusted estimator will generally be misspecified. In
addition, the TMLE estimator uses logistic regression working models
(by first scaling the outcome to the interval [0,1]) rather than linear
models, which can lead to additional misspecification. (The usage of
logistic regression on bounded continuous variables is justified in Ref.
[18] because it preserves the bounds on the outcome.) Though the
adjusted estimator is robust to the above model misspecification in that
it is still consistent and asymptotically normal, the misspecification may
reduce its precision [13]; Section 4).

4.3. Adaptive enrichment design

We define a new adaptive enrichment design using the general
framework developed by Ref. [10]. We consider two subpopulations
denoted by S: S = 1 if the patient has no APOE ɛ4 allele, and S = 2 if
the patient has one or more APOE ɛ4 allele. Denote by S = 0 the
combined population. We consider an adaptive enrichment design with
maximum number of stages K = 5. At each analysis ≤k K , denote by
Zs,k the Wald statistic (estimator divided by its standard error) for null
hypothesis H0s ( ∈s {0,1,2}). For each population s and stage ≤k K , let
us,k denote the efficacy boundary for the null hypothesis H0s

( ∈s {0,1,2}), and let ls,k denote the futility stopping boundary ( ∈s {1,2}).
Below are the steps that are followed at each analysis ≤k K to

Table 1
Summary of setups for 5 simulation studies. Default value of parameter: =R 0.20W

2 ,
=R 0.48L

2 , dL = 1 years, dY = 2 year, accrual rate 167 patients/year. Ranges of values
x − y indicate the design characteristic(s) varied in the corresponding simulation study.

Simulation
study

RW
2 RL

2 dL (years) dY (years) Accrual rate
(patients/year)

1 0 − 0.6 0 default default default
2 0 0 − 0.6 default default default
3 default 0 default 0 − 4 default
4 default default 0 − dY 0.1,1,2,3,4 default
5 default default default default 50 − 500
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determine the continuation (or stop) of enrollment and the results of
hypothesis testing.

1. For each ∈s {1,2}, if subpopulation s has not had enrollment stopped
at a previous analysis, and if Zs,k > us,k, reject H0s.

2. For each ∈s {1,2}, if H0s is rejected or Zs,k < ls,k, stop subpopulation
s enrollment.

3. If both H01 and H02 are rejected, or (if both subpopulations have not
had enrollment stopped at a previous analysis and Z0,k > u0,k),
reject H00.

The trial continues until both subpopulations terminate enrollment
or the final analysis K is reached. For ∈s {0,1,2}, if H0s is not rejected in
the above steps, we fail to reject it.

Define the power of H01 to be the probability to reject H01 under
effect setting (b), power of H02 to be the probability to reject H02 under
effect setting (c), and power of H00 to be the probability to reject H00

under effect setting (d). The design's goals are to achieve at least 80%
power to reject the corresponding null hypothesis under each effect
setting (b), (c), and (d), and to strongly control the familywise Type I
error rate at level 0.025, asymptotically. For example, the requirement
under effect setting (b) is 80% power for H01.

The Type I error spent at each stage, futility boundaries
∈ ≤ ≤l s k K, {1,2}, 1s k, and the information level (inverse of the esti-

mator's variance) used for analysis timing are in Table 2. They were
constructed by approximately solving the following optimization pro-
blem: for the unadjusted estimator under the default simulation sce-
nario, minimize the expected sample size averaged over effect settings
(a)-(d), subject to the Type I error and power constraints in the previous
paragraph. The optimization was solved using an approach from Ref.
[19]; and does not necessarily equal the true optimum solution (which
is currently an open research question). The asymmetry in the solution
is because the proportion of subpopulation 1 p1 = 0.47 and the var-
iances differ by subpopulation. In determining the values of efficacy
boundaries ∈ ≤ ≤u s k K, {0,1,2}, 1s k, , we use the error spending ap-
proach as described in Rosenblum et al. (2016, Section 3.2), which
extends the approach of [20,21] to multiple populations. The bound-
aries are numerically calculated to ensure that the test at each stage
maintains its pre-specified Type I error, by assuming joint normal dis-
tribution of the test statistics; see the Supplementary Material for de-
tails. These efficacy boundaries depend on the covariance matrix of the
estimator being used. As shown in Ref. [10]; the design is guaranteed to
strongly control the familywise Type I error rate at level 0.025,
asymptotically, for Wald statistics based on either the unadjusted or

adjusted estimators.

4.4. Analysis timing and information accrual

We present our method to determine the time of each analysis based
on information monitoring. Consider either the adjusted or the un-
adjusted estimator. There are 3 populations of interest (the two sub-
populations and the combined population) in our design. For each
population there is a treatment effect estimator whose variance changes
over time as patients are continuously enrolled. We define the in-
formation accrued for each population as the reciprocal of the corre-
sponding estimator's variance. The kth analysis occurs at the earliest
time when the information accrued for every population is above its
corresponding, preset threshold (which is a preset function of the Type I
error allocated at that stage, i.e., part of the trial design). Information
thresholds in the design, shown in Table 2, were set such that for the
unadjusted estimator in the default simulation scenario, the informa-
tion accrual for each population crosses its threshold at the same ca-
lendar time. Information can accrue at different rates depending on
whether the unadjusted or adjusted estimator is used, as shown in our
simulations (Section 6). Faster information accrual can lead to earlier
analyses in calendar time.

Since in a real trial the variance of each estimator is unknown, one
could use a variance estimator that is updated whenever new data ac-
crues (See Section 6 where we investigate the accuracy of information
estimation at given time points.). However, it is not computationally
feasible to implement this in our simulations where each data gen-
erating distribution is used to simulate 50,000 trials. Instead, we set
analysis timing once for each simulation scenario and estimator type,
using an approximation described in the Supplementary Material.

Table 3 shows the calendar times of each analysis for the unadjusted
estimator and the adjusted estimator under the default simulation
scenario. The cumulative sample size at each analysis time is random
due to the random accrual process; Table 3 is an example realization.
Time of analysis and sample sizes are substantially smaller for the ad-
justed estimator compared to the unadjusted estimator due to the
former having a faster information accrual rate.

5. Results

We simulated 50,000 trials for each simulation scenario and effect
setting combination. Table 4 shows the empirical probability of re-
jecting each hypothesis under the four effect settings in the default si-
mulation scenario. The numbers with * indicate Type I error, i.e., re-
jecting at least one true null hypothesis. Under effect setting (a), all null
hypotheses are true; under effect setting (b) (or (c)), only H01 (or H02) is
true; under effect setting (d), none of the null hypotheses are true.

Across all the simulation scenarios we considered, the familywise
Type I error rate was always controlled at 0.025 for both adjusted and
unadjusted estimators. All the power goals in Section 4.3 are met. For
the unadjusted estimator, the powers of H00, H01 and H02 are all about
80% under different simulation scenarios. This is as expected due to our
method of determining the analysis timing described in Section 4.4. For
the adjusted estimator, the power of H02 also stays near 80% under
different simulation scenarios, whereas the power of H00 and H01 under
certain simulation scenarios can be much higher than 80%. For ex-
ample, when the prognostic value in W (RW

2 ) is over 0.3, the power of
H01 can exceed 90%. This is because when adjusting for baseline
variables, the ratio of information accrual rate between the two sub-
populations is different than when the unadjusted estimator is used,
which changes the covariance matrix of the test statistics. If one in-
tended to have exactly 80% power for all three hypotheses for the
adjusted estimator, we could have optimized a separate adaptive design
for the adjusted estimator to incorporate the different RW

2 in two sub-
populations. However, this would make it harder to do a head-to-head
comparison of the unadjusted estimator and the adjusted estimator, so

Table 2
Adaptive enrichment design and efficacy boundaries under default simulation scenario.

Analysis (k) 1 2 3 4 5

Type I error spent for Subpop. 1 0.0007 0.0007 0.0028 0.0015 0.0038
Type I error spent for Subpop. 2 0.0001 0.0023 0.0012 0.0026 0.0027
Type I error spent for Comb.

Pop.
0.0028 0.0006 0.0009 0.0013 0.0012

Futility boundary (l1,k) −4.12 0.40 −1.48 0.94 –
Futility boundary (l2,k) −0.10 0.29 0.42 0.93 –

Information threshold for
Subpop. 1

13.0 20.2 24.9 40.1 69.1

Information threshold for
Subpop. 2

13.4 20.2 25.7 41.1 69.6

Information threshold for
Comb. Pop.

27.1 40.8 50.1 80.3 138.5

Efficacy boundaries for the unadjusted estimator under default simulation scenario
Effcacy boundary (u1,k) 3.12 3.06 2.64 2.77 2.53
Effcacy boundary (u2,k) 3.52 2.76 2.78 2.63 2.62
Effcacy boundary (u0,k) 2.78 3.08 2.92 2.86 2.89
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we believe the current simulation setup makes more sense.
In what follows, we focus on comparing the expected sample size

(ESS) and the expected duration (ED) as summaries of trial performance
under different simulation scenarios and between the two estimators.

5.1. Simulation studies 1–2: effect of prognostic value of baseline variables
and short-term outcome

Fig. 1 illustrates how ESS and ED are affected when one of RW
2 or RL

2

varies. The performance of the unadjusted estimator remains the same
when the prognostic value in W and L changes, providing a benchmark
to compare against. The adjusted estimator performs similar to the
unadjusted when there is no prognostic value in W or L, i.e.

= =R R 0W L
2 2 . As RW

2 or RL
2 increases, the adjusted estimator leverages

this to achieve faster information accrual and fewer participants per
stage, which leads to smaller ESS and ED. In simulation study 1, RW

2 is
varied from 0 to 0.6; in simulation study 2, RL

2 is varied from 0 to 0.6
(Table 1).

Our results indicate that for the adjusted estimator, a prognostic
baseline variable is more valuable than an equally prognostic short-
term outcome in terms of reducing ESS and ED. For instance, under
effect setting (d), increasing RW

2 from 0 to 0.25 results in a 19% drop in
ESS (1618–1314), whereas increasing RL

2 from 0 to 0.25 only renders a
1% drop (1618–1608). This is because all enrolled patients' baseline
variables contribute to the precision of the adjusted estimator; however,
although the short-term outcome of every participant is used, the effi-
ciency gain from adjusting for L is proportional to the number of par-
ticipants in the pipeline (i.e., those who have L but not Y observed).
Moreover, a participant's baseline variables improve precision for es-
timation of both E(Y |A = 1) and E(Y |A = 0), while a participant's
short-term outcome is only used toward improving precision for one of

these, corresponding to the treatment that participant received.
Theoretical justification of this based on semiparametric efficiency
theory can be found in Ref. [22].

5.2. Simulation studies 3–4: effect of delay times dY and dL

We assess the impact of delay times dY and dL on the performance of
the design. In simulation study 3, we vary dY from 0 years (immediate
Y) to 4 years with L being not prognostic at all, in order to separate the
impact of dY. In simulation study 4, we set dY to several levels, and in
each case vary dL from 0 (immediate L) to dY; in this situation we set the
prognostic value of L to default (same as in the ADNI data set).

Fig. 2 shows the comparison under simulation study 3. ESS and ED
increase with longer dY for both estimators. This is intuitive: the longer
it takes to observe the primary outcome, the more time is needed to
accumulate the necessary information. The adjusted estimator leads to
smaller ESS and ED than the unadjusted estimator uniformly over all
values of dY because of gains from adjusting for baseline variables W. In
addition, ESS and ED for both estimators are approximately linear in dY.

Fig. 3 shows the comparison under simulation study 4. When dY is
fixed, the performance of the unadjusted estimator remains the same
regardless of the length of dL, because L is not used in the unadjusted
estimator. For the adjusted estimator, a longer dL results in a smaller
proportion of pipeline participants who have L observed—hence,
slower information accrual and larger ESS and ED. Such impact of dL is
modified by dY in that having a quickly-observable short-term outcome
(i.e., smaller dL) is slightly more beneficial when the delay of the final
outcome is longer. For example, when dY = 4 years, decreasing dL from
dY to 0 results in a 2% drop in average duration (8.9 years–8.7 years);
when dY = 0.1 years, changes in dL have almost no effect on the trial.
Of course, this is also because we are considering dL on a relative scale
of dY. Finally, note that even when dL = dY, which implies no asymp-
totic precision gain from adjusting for L, the adjusted estimator still
gains efficiency from adjusting for prognostic W.

5.3. Simulation study 5: effect of accrual rate

Fig. 4 illustrates how the ESS and ED are affected by accrual rate
when the outcomes are observed with delay. Because the information
depends either entirely (for the unadjusted estimator) or largely (for the
adjusted estimator) on the number of participants who have the de-
layed response Y observed, with faster accrual there will generally be
more pipeline participants at interim analyses. These additional pipe-
line participants make ESS larger. Therefore, having fast accrual can
have the negative consequence of increasing the overall study size
when the primary outcome is measured with delay. For ED the result is
intuitive: the duration of the trial gets shorter with faster accrual. We
observe similar trends for both estimators.

Table 3
Calendar time to conduct interim analysis for unadjusted and adjusted estimators under default simulation scenario. For one realization of the trial we show the cumulative sample size
(CSS) with the format: number of participants with Y observed (+number of pipeline participants). If no early stop occurs, “stop enroll” column shows the time of last participant
enrolled, and we wait until all participants have Y observed then conduct the final analysis (analysis 5).

Analysis (k) 1 2 3 4 stop enroll 5 (final)

Unadjusted estimator
Time (years) 4.4 5.6 6.4 9.1 12.3 14.3
CSS (Subpop. 1) 202 (+148) 299 (+135) 353 (+149) 544 (+157) 928 (+138) 1066 (+0)
CSS (Subpop. 2) 211 (+190) 329 (+175) 405 (+158) 620 (+170) 1040 (+183) 1223 (+0)
CSS (Comb. Pop.) 413 (+338) 628 (+310) 758 (+307) 1164 (+327) 1968 (+321) 2289 (+0)
Adjusted estimator
Time (years) 3.7 4.8 5.5 7.7 10.2 12.2
CSS (Subpop. 1) 138 (+159) 219 (+158) 278 (+156) 453 (+158) 824 (+171) 995 (+0)
CSS (Subpop. 2) 150 (+164) 236 (+169) 295 (+182) 500 (+196) 916 (+186) 1102 (+0)
CSS (Comb. Pop.) 288 (+323) 455 (+327) 573 (+338) 953 (+354) 1740 (+357) 2097 (+0)

Table 4
Type I error/power for two estimators under default simulation scenario. Type I errors
(numbers with*) are computed assuming nonbinding futility boundaries; powers are
computed assuming binding futility boundaries. In “Percent probability to reject”, to
reject an individual hypothesis means to reject at least that hypothesis; All/Any means to
reject all/any of the three hypotheses. The empirical values corresponding to the power
requirements are in bold for each scenario (b)-(d).

Effect setting Percent probability to reject

H00 H01 H02 All Any

Adjusted estimator (a) Δ1 = Δ2 = 0 0.7* 1.1* 1.1* 0.0* 2.5*
(b) = =Δ Δ Δ, 01 min 2 12 87 1.1* 1.0* 88
(c) = =Δ Δ Δ0,1 2 min 16 1.0* 80 0.9* 85
(d) = =Δ Δ Δ1 2 min 84 87 80 69 98

Unadjusted
estimator

(a) Δ1 = Δ2 = 0 0.6* 1.1* 1.1* 0.0* 2.5*
(b) = =Δ Δ Δ, 01 min 2 12 81 1.0* 0.9* 81
(c) = =Δ Δ Δ0,1 2 min 15 1.1* 81 0.9* 82
(d) = =Δ Δ Δ1 2 min 82 82 81 67 97
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Fig. 1. Left: impact of RW
2 on ESS and ED in simulation

study 1. Right: impact of RL
2 on ESS and ED in simu-

lation study 2. Since the results corresponding to un-
adjusted estimator do not change as RW

2 and RL
2 are

varied, they are marked only once next to the vertical
axis using the circle, square, diamond, and triangle
symbols. δ refers to Δmin .

Fig. 2. Impact of dY on ESS and ED in simulation study
3. Different line types indicate the ESS and ED under
four effect settings. For the unadjusted estimator, the
lines for ED under effect settings (b) and (c) are clus-
tered together. For the adjusted estimator, the lines for
ED under effect settings (b)–(d) are clustered together.
δ refers to Δmin .
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6. Information accrual rates and estimating information levels

In Section 4.4 we presented our approach for determining the time
for analyses based on information monitoring. Here we explore in-
formation accrual more thoroughly and discuss how accurately in-
formation can be estimated in an ongoing trial. At time t, we are in-
terested in two types of information level: the current information, i.e.,
the inverse of variance of the estimator computed using available data
at time t, and the wait-for-pipeline information, i.e., the inverse of var-
iance of the estimator using available data at time t plus the not yet
observed L and Y of the pipeline participants at time t. In order words,
the wait-for-pipeline information for time t is computed as if enrollment
were stopped at time t and we wait till all pipeline participants finish
the trial before calculating the estimator. The current information is
used for determining time for interim analyses, and the wait-for-pipe-
line information is used for determining time for the final analysis
where we wait until all pipeline participants finish the trial and then
test hypotheses.

Fig. 5(a) shows how the two types of information accrue over time
for the two estimators under the default simulation scenario when

enrollment for both subpopulations continues. For the unadjusted es-
timator, the information at a given time is proportional to the number
of patients with Y observed; for the adjusted estimator, such pro-
portionality is only approximate because the pipeline participants also
contribute information. There is an approximately constant gap be-
tween the current information and the wait-for-pipeline information for
each estimator, because the extra information in the not yet observed
outcomes from the pipeline participants stays roughly constant over
time. The adjusted estimator results in a faster information accrual
compared to the unadjusted estimator, which is consistent with better
trial performance (as shown in Section 5). The information accrual rates
do not depend on Δ1 and Δ2 since in our setup these do not impact the
estimator's variance.

In practice, one needs a reliable method for estimating the in-
formation level using data from the ongoing trial in order to determine
information-based timing for interim and final analyses. The sample
variance is used to estimate the true variance of the unadjusted esti-
mator. For the adjusted estimator, its variance can be estimated using
the nonparametric bootstrap or by the influence curve. The ltmle
package computes an influence-curve-based variance estimate (ICVE)

Fig. 3. Effect of dY and dL on ESS and ED in simulation study 4. Since the results corresponding to unadjusted estimator do not change when dL varies as long as dY is fixed, they are
marked only once next to the vertical axis using the circle, square, diamond, and triangle symbols. δ refers to Δmin .
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for the TMLE estimator. In theory ICVE can be conservative in the sense
that it may overestimate the variance [12]; in our simulation it ap-
proximates the variance quite well.

Fig. 5(b) summarizes the performance of the variance estimators
under the default simulation scenario. The solid red line connects the
true information levels over time, and the box-plots represent the dis-
tribution of inverse of variance estimator at 5 analyses assuming no
early stopping (sample variance estimator for the unadjusted, ICVE for
the adjusted). For the information of the adjusted estimator, the mean
and the spread of the distribution increase with time (and hence with
sample size n), because the information level is approximately n times
the reciprocal of the variance of the estimator's influence curve, and the
latter is estimated with standard error proportional to n−1∕2 asympto-
tically. Therefore, the spread in the box plots representing the ap-
proximate interquartile range grows at rate n1∕2. A similar observation
applies to the sample variance estimate for the unadjusted estimator.
Estimation accuracy for information accrual is similar for the two es-
timators.

7. Conclusion and discussion

We conducted extensive simulation studies to examine the sensi-
tivity of trial performance (measured by Type I error, power, expected
sample size, and average duration) to different trial characteristics,
including prognostic value of the baseline variable W and the short-
term outcome L, delay time to observe the short-term outcome (dL) and
the primary outcome (dY), and the accrual rate. We constructed simu-
lation distributions to mimic features of the ADNI data set. We used the
full set of baseline variables in generating data, and only used a subset
in the adjusted estimator to incorporate model misspecification in our
simulation study. Throughout the paper, we do not assume that the
short-term outcome L is a surrogate. That is, we are not using L as basis

for stopping rules. L is only used for improving estimation precision of
the treatment effect, due to its correlation with the primary outcome.

For both the unadjusted estimator and the adjusted estimator, ex-
pected sample size and trial duration increase with longer delay of the
primary outcome (dY). Faster patient accrual results in shorter trial
duration, but can have the negative consequence of increasing the
overall study size when the primary outcome is measured with delay.

For trials using the adjusted estimator, with more prognostic W or L
the power increases, and the expected sample size and average duration
decrease. A prognostic W results in better trial efficiency compared to
an equally prognostic L (measured in terms of R2). Shorter dL helps to
slightly reduce expected sample size and average duration, when L is
prognostic for the primary outcome.

For trials using the unadjusted estimator, because it only uses in-
formation in the observed primary outcome, the performance is not
affected by the prognostic value ofW or L, or the delay to the short-term
outcome dL.

The adjusted estimator is especially useful when there are strongly
prognostic baseline variables or short-term outcome available, or when
the primary outcome is measured with considerable delay while a
prognostic, short-term outcome is observed relatively soon after en-
rollment. Our simulation results can inform trial planning that involves
delayed response.

In simulation studies 3 and 4 in Section 5.2, we set constant prog-
nostic values RW

2 and RL
2, while varying dL and dY. It may also be of

interest to consider a range of simulation scenarios where the prog-
nostic value changes with delay. For example, it is possible that with
longer dY, the baseline variablesW become less correlated with the final
outcome Y, e.g., if these variables measure the same quantity at dif-
ferent time points. In addition, if dL is closer to dY then the correlation
between L and Ymay become stronger. It is an area of future research to
explore such simulation scenarios, in which there is a trade-off that

Fig. 4. Impact of accrual rate on ESS and ED. Different
line types indicate the ESS and ED under four effect
settings. For each estimator, the curves for ED under
effect settings (b)–(d) are clustered together. δ refers to
Δmin .
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shorter dL results in more pipeline participants with L observed, but
such L is less prognostic for Y.

Open research problems include investigating the impact of the
subpopulation proportion differing from the assumed value, and gen-
eralizing the findings to other trial designs and data generating me-
chanisms. Another problem is to evaluate the impact of dropout in the
simulation. The adjusted estimator can provide advantages over the
unadjusted estimator for handling dropout under the missing at random
assumption, in which case the unadjusted estimator can be inconsistent
[12].

Throughout, we considered a continuous-valued primary outcome
Y. For the case of a binary outcome, the adjusted estimator of [23] can
be used, in which case R2 (computed in the ordinary least squares sense,

as described in their Section 6) is directly related to the asymptotic
variance reduction due to adjustment. For a time-to-event outcome, one
can use the adjusted estimator of [24]; in this case, there may not be a
simple formula such as R2 for computing the asymptotic variance re-
duction due to adjustment.
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